MathJax

Πέμπτη 15 Δεκεμβρίου 2016

jesus' problems

Conjecture 1.1: Let \( \mathbb{T}^{2} \) be a closed two-dimensional box with periodic boundary conditions. Consider \( \Omega \subsetneq  \mathbb{T}^{2} \) a closed domain occupied by a two-dimensional radioactive source and \( \mathcal{C} \) a two-dimensional cat embedded in \( \mathbb{T}^{2} \setminus \Omega \) .

Apply, now, Arnol'ds cat map \( \Gamma \) to \( \mathbb{T}^{2} \setminus \Omega \rightarrow \mathbb{T}^{2} \). Then, the probability that the cat dies goes very rapidly to \( 1\).

We have a beautiful proof of the above statement, but this internet is too small for the proof to fit in.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

για συνδέστε, για συνδέστε...