Theorem 1 Liouville numbers form a generic subset of the torus \( \mathbb{T}^{1} \).
Proof: We delete the interval of size \( 2 q^{-n} \) centered in \( \frac{p}{q} \), for every \( p \) and every \( q \). \( \square \)
considering the above to be a valid demonstration is known as the Placebo effect.
Proof: We delete the interval of size \( 2 q^{-n} \) centered in \( \frac{p}{q} \), for every \( p \) and every \( q \). \( \square \)
considering the above to be a valid demonstration is known as the Placebo effect.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
για συνδέστε, για συνδέστε...